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Spectral Snapshots of Bacterial Cell-Wall Composition and the Influence of
Antibiotics by Whole-Cell NMR

Rie Nygaard,' Joseph A. H. Romaniuk,’ David M. Rice,' and Lynette Cegelski'""
"Department of Chemistry, Stanford University, Stanford, California

ABSTRACT Gram-positive bacteria surround themselves with a thick cell wall that is essential to cell survival and is a major
target of antibiotics. Quantifying alterations in cell-wall composition are crucial to evaluating drug modes of action, particularly
important for human pathogens that are now resistant to multiple antibiotics such as Staphylococcus aureus. Macromolecular
and whole-cell NMR spectroscopy allowed us to observe the full panel of carbon and nitrogen pools in S. aureus cell walls and
intact whole cells. We discovered that one-dimensional **C and >N NMR spectra, together with spectroscopic selections based
on dipolar couplings as well as two-dimensional spin-diffusion measurements, revealed the dramatic compositional differences
between intact cells and cell walls and allowed the identification of cell-wall signatures in whole-cell samples. Furthermore, the
whole-cell NMR approach exhibited the sensitivity to detect distinct compositional changes due to treatment with the antibiotics
fosfomycin (a cell-wall biosynthesis inhibitor) and chloramphenicol (a protein synthesis inhibitor). Whole cells treated with fos-
fomycin exhibited decreased peptidoglycan contributions while those treated with chloramphenicol contained a higher percent-
age of peptidoglycan as cytoplasmic protein content was reduced. Thus, general antibiotic modes of action can be identified by

profiling the total carbon pools in intact whole cells.

INTRODUCTION

Gram-positive bacteria such as Staphylococcus aureus sur-
round themselves with a thick cell wall that is crucial to
the mechanical and chemical integrity of the cell (1). The
coordinated assembly of the cell wall is a tremendous mi-
crobial engineering feat that yields a micron-scale poly-
meric matrix, incorporating modified sugars and peptides.
The rich history of research in examining cell-wall assembly
processes is in part a result of the natural and intense curios-
ity to understand how such a self-assembly process occurs,
is regulated, and is poised to respond to external stimuli and
changes (2). At the same time, understanding cell-wall as-
sembly and architecture is motivated by the need for new
strategies to prevent and treat infectious diseases (3). This
is particularly true with the dwindling number of antibiotics
being added to the clinical arsenal of anti-infectives and is
coupled to the increasing emergence of bacteria resistant
to today’s drugs of last resort such as methicillin- and van-
comycin-resistant S. aureus (MRSA and VRSA) (1,4,5), so-
called superbugs. As a human pathogen, S. aureus can cause
skin and soft tissue infections as well as sepsis (6,7). Infec-
tion occurs when S. aureus penetrates skin or mucosal bar-
riers and colonizes tissues or enters the bloodstream (6).
Cell-wall biosynthesis inhibitors are commonly used to
treat S. aureus infections. These include penicillin, methi-
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cillin, and other $-lactams and cephalosporins, as well as
the glycopeptide antibiotic vancomycin. In addition, orita-
vancin (Orbactiv; The Medicines Company, Parsippany,
NJ) is a newer glycopeptide antibiotic that was approved
by the FDA in August 2014 for the treatment of skin infec-
tions by Gram-positive bacteria including MRSA (8).
Resistance to antibiotics appears inevitable with time and
challenges us to develop new antibiotics in response to or
in anticipation of antibiotic resistance (9). For antibiotics
that target cell-wall biosynthesis, measurements of cell-
wall composition and architecture are crucial to dissecting
drug modes of action, and to characterizing changes as bac-
teria become resistant to an antibiotic. Yet, the Gram-posi-
tive cell wall is a heterogeneous insoluble macromolecular
polymeric matrix that surrounds the cell and poses a chal-
lenge to nonperturbative analyses of composition and archi-
tecture. The primary component and structural scaffold of
the cell wall is the peptidoglycan, composed of repeating
units of a disaccharide-multipeptide building block that
are polymerized and cross-linked to create a continuous
network that envelops the cell (Fig. 1). Peptidoglycan
biosynthesis is coordinated through the action of >10 pro-
teins. Different cell-wall inhibitors target distinct steps in
peptidoglycan biosynthesis, ranging from inhibiting the
production of the disaccharide inside the cell (fosfomycin)
(10) to preventing the cross-linking of peptide stems outside
the cell (penicillin) (11,12). Wall teichoic acids and proteins
are also covalently attached to the peptidoglycan to
generate a complete cell wall that protects the cell from
turgor pressure and external stress and confers functional
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benefits in adhesion and host interactions during infection
(13,14).

Solid-state NMR has emerged as a powerful technique to
examine the chemical composition and architecture of cell
walls in bacteria as well as in plants. The quantification of
key cross-linking sites has been performed in both isolated
bacterial cell walls and in whole cells (15,16) using appro-
priate biosynthetic labeling strategies and NMR detection.
A decrease in the D-Ala-Gly cross-link density, for
example, can be detected in cells treated with penicillin
(16), which leads to a weakened cell wall and subsequent
cell lysis. Although the modes of action of penicillin and
many other antibiotics have been examined extensively
during and after the Golden Age of antibiotics in which
most antibiotics were discovered, the conventional analyt-
ical methods typically require enzymatic or acid hydrolysis
of polymer units and then rely on subsequent quantification
estimates by chromatography and mass spectrometry of the
units that are able to be solubilized (17). Complications in
quantification arise from the incomplete dissolution of the
cell wall and from differences in the extent of detection
of certain substituents based on charge and properties that
influence ionization in mass spectrometric detection, for
example. Solid-state NMR approaches permit the analysis

resulting in the concomitant loss of the terminal
D-Ala). Wall teichoic acids are also covalently
attached to the peptidoglycan (bottom). To see
this figure in color, go online.

of cell-wall composition in intact cell walls and, for certain
elements, in whole cells themselves. NMR methods were
used previously to examine the influence of vancomycin
on cell-wall composition (15) and to determine the mode
of action of the recently FDA-approved oritavancin (Orbac-
tiv; The Medicines Company) by examining changes among
key peptidoglycan cross-links and peptidoglycan precursors
(18). Specific internuclear distance measurements using
rotational-echo double resonance (REDOR) NMR were
also employed to develop atomic-level models of antibi-
otic-cell wall complexes, particularly for oritavancin and
related analogs, and permitted the generation of structure-
activity relationships to correlate antibiotic efficacy with
structural mapping in the cell wall (18-23). All of these
studies were performed using selectively labeled samples
to identify key nuclei of interest. Cross-links were identified
and quantified, for example, by incorporating D-[1-'*C]Ala
and [ISN]Gly, whereas [1-13C]G1y and [s—lSN]Lys labeling
has been used to quantify bridgelinks. Indeed, many studies
with selectively labeled samples have provided important
insights regarding specific features of cell-wall composition,
architecture, and drug modes of action.

Here, we report our discoveries and valuable spectro-
scopic signatures using unlabeled and uniformly labeled

Biophysical Journal 108(6) 1380-1389



1382

samples that report on all carbon and nitrogen pools in an
unbiased way. Uniform labeling is typically simpler to
implement than selective labeling strategies, where one
must consider and quantify the isotopic enrichment and
extent of scrambling or isotopic dilution attributed to endog-
enous synthesis. We define and compare the '*C and '°N
composition of intact S. aureus whole cells and cell walls
using cross-polarization magic-angle spinning (CPMAS),
REDOR, frequency-selective REDOR, and two-dimen-
sional '*C spin-diffusion measurements. There are clear dif-
ferences between the NMR spectra of cell walls and the
whole cells from which they were isolated that immediately
reveal the compositional differences in their carbon and ni-
trogen pools. We also discovered that changes in cell-wall
composition in protoplast preparations and among antibi-
otic-treated cells could be identified in intact whole-cell
samples. This approach to examining intact cell walls and
whole cells by NMR provides spectral snapshots of cell-
wall composition in the spirit of how whole-cell biochem-
ical assays such as Western blots can reveal the comparative
levels of specific soluble proteins of interest among cell ly-
sates. As new discoveries are being made regarding the full
extent of modes of action of even some of our classic anti-
biotics such as penicillin and other 3-lactams, more holistic
and less perturbative methods are invaluable in fully under-
standing the influence of antibiotics on cellular processes
(24).

MATERIALS AND METHODS

Growth of S. aureus and isolation of
peptidoglycan

Uniformly labeled S. aureus (ATCC No. 29213; American Type Culture
Collection, Manassas, VA) were grown in a modified S. aureus synthetic
medium (SASM) (15,25,26) in which all amino acids were replaced by
2 g/L "N labeled algal amino-acid mixture or '°N and '>C labeled algal
amino-acid mixture (Cat. No. 487910; ISOTEC, Sigma-Aldrich, St. Louis,
MO). The algal extract contains between 65 and 95% amino acids by mass
and has an isotope enrichment of 99% for '*C and '’N. For uniformly '*N-
and '*C-labeled samples, ('°NH,),SO, (98% '°N enrichment) and [u-'>C]
glucose (99% '*C enrichment) were also used, respectively, in place of their
unlabeled counterparts. For cells treated with antibiotics, each antibiotic
was added during S. aureus growth in the modified SASM at ODggy =
0.5 and cells were harvested 270 min later.

The S. aureus cultures were maintained on TSA (tryptic soy agar). To
begin NMR sample preparations, 5 mL aliquots of ['°N]SASM or ['*C,
>N]SASM were inoculated with a single colony and grown overnight at
37°C, shaking at 200 rpm. For whole-cell and cell-wall preparations,
300 mL cultures were prepared in 1 L flasks by inoculating the SASM broth
with 1 mL (a 1:300 dilution, v/v) of the overnight starter culture. Whole-cell
samples were prepared from 300 mL cell culture and cell-wall samples
were prepared from 900 mL of cell culture. Cells were harvested at
ODggp = 1.0 by centrifugation at 10,000 g at 4°C for 10 min. Cells were
subsequently washed three times by resuspension with 5 mM HEPES buffer
(pH 7) and centrifugation to remove excess media components. For whole-
cell samples, the final cell pellets were frozen and lyophilized. The isolation
of cell walls was performed as described previously in Zhou and Cegelski
(25).
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Protoplast preparation

The S. aureus protoplasts were prepared following literature protocols. Cul-
tures were grown to ODggo = 1.0 in u-3C, '>N SASM and the cells were
isolated by centrifugation at 10,000 g at 4°C for 10 min, and washed
once with 50 mM Tris (pH 7.5). The cells were suspended in 1 M trehalose
and 50 mM Tris, and allowed to equilibrate on ice. A quantity of 3 mg of
lysostaphin (Sigma-Aldrich) and 1 mg of DNasel (Sigma-Aldrich) were
then added to the suspension, allowed to equilibrate, and then incubated
at 37°C, 200 rpm for 1 h. The digestion of the cell walls and preparation
of the protoplasts was judged complete when the optical density of a 1:4
dilution of the suspension in 50 mM Tris decreased from 1.0 to 0.25, indi-
cating cell lysis. The protoplasts were then collected by centrifugation at
10,000 g at 4°C for 30 min, and washed once with the buffered 1 M treha-
lose solution. The isolated protoplasts were frozen and lyophilized.

Solid-state NMR

Solid-state NMR experiments were performed in an 89-mm 11.7 T wide-
bore magnet (Agilent Technologies, Danbury, CT) using a four-frequency
HPCN transmission-line probe (‘H 500.92 MHz, "*C 125.96 MHz, and
15N 50.76 MHz) with a four-channel DD2 console (Agilent Technologies),
employing high-power, active transmit/receive switching. Samples were
spun at 7143 Hz in thin-wall 5-mm zirconia rotors and maintained at a
temperature of ~5°C (with an FTS Chiller, from FTS Thermal Products,
SP Scientific, Warminster, PA, supplying air at —25°C). Spectra were
obtained with 'H-'C CPMAS, followed by synchronized spin-echo
detection after two rotor periods. Field strengths for '*C and °N cross-po-
larization were all 50 kHz with 7-pulses of 10 us and with a 10% linear "H
ramp centered at 57 kHz. Decoupling field strengths were 72 kHz (using
SPINAL) during acquisition and 100 kHz (continuous wave) during pe-
riods containing REDOR pulses. The CPMAS mixing time was 1.5 ms
and the recycle time was 3.0 s for all experiments. '>C chemical shifts
were referenced to tetramethylsilane as 0.0 ppm using a solid adamantane
sample at 38.5 ppm. The N chemical shift scale is referenced to
ammonia as 0 ppm where solid L-[amide-'">’N]Asn appears at 114.5
ppm. Referencing of >N to ammonia at 0 ppm is a change from our pre-
vious use of solid NH4SO, at O ppm typical in the older solid-state NMR
literature and corresponds to a difference of 25.4 ppm for '°N chemical
shifts.

REDOR was used to restore the '*C-'>N dipolar couplings that are
removed by magic-angle spinning (MAS). REDOR experiments are always
done in two parts, once with dephasing (S) and once without (full echo, Sy).
The difference in signal intensity (REDOR difference, AS = S, — S) for the
observed spin in the two parts of the REDOR experiment is directly related
to the corresponding distance to the dephasing spin. Standard REDOR (27)
for Fig. 3 made use of alternating m-pulses on the '*C and '°N channels with
XY8 phase cycling followed by echo detection. The 16-7, frequency-selec-
tive REDOR measurement in Fig. 4 made use of the general method of
Jaroneic et al. (28), although we employed alternating pulses on both '°N
and "*C channels with X'Y8 phase cycling because '>C was at natural abun-
dance. Simultaneous refocusing and inversion pulses on the '>C observe
and >N dephasing channels, respectively, were placed in the center of
the total evolution period. A selective RNSOB pulse (29) (1960 us centered
in 16 rotor periods) was used for '°N inversion in the center of the sequence,
whereas a nonselective pulse of 10 us was used to refocus the entire '>C
spectrum. The bandwidth of the '°N inversion pulse was verified with a se-
lective inversion centered between two /2 pulses.

Two-dimensional '>C spectroscopy for Fig. 5 was performed with a stan-
dard hXX method (30) using dipolar-assisted rotational resonance (DARR)
mixing (31) (‘H 7.1 kHz). We note that at the 7143 Hz spinning speed em-
ployed here, DARR and proton-driven spin diffusion (32) have nearly the
same mixing rate, so the 'H irradiation is not strictly necessary for further
experiments. Projections for Fig. 4 were obtained by summing F2 traces
over the appropriate frequency region of F1.



Cell-Wall Composition by Whole-Cell NMR

RESULTS

Carbon and nitrogen pools in whole cells and cell
walls

Uniformly labeled cells were prepared using a modified
SASM. Unlike Escherichia coli, S. aureus cannot grow on
a minimal medium with only general nitrogen and carbon
sources for growth and require several amino acids and
vitamins to be provided exogenously (33). SASM includes
all 20 amino acids plus vitamins, trace metals, etc., and
has been used to introduce specific amino-acid labels in
cells and cell walls (26). We substituted the 20 amino acids
with a commercially available '*N-labeled- or 'N/"*C-
labeled amino-acid algal extract. For uniform '°C and '*N
labeling, (ISNH4)ZSO4 and [13C6]gluc0se were also used,
respectively, in place of their unlabeled counterparts in
SASM.

The '3C CPMAS spectra of [u—13C, u—lSN] whole cells
and cell walls contain a prominent carbonyl peak centered
at 172 ppm and an array of peaks associated with polysac-
charides, protein a-carbons, and aliphatics (Fig. 2). The
sharper peak at 33 ppm in the whole-cell spectrum is indic-
ative of lipid content and the 140-160 ppm peaks corre-
spond to nucleic acids, e.g., ribosomal RNA. Nucleic
acids and lipids should be and are absent in the cell-wall
spectrum, confirming that unbroken cells were removed dur-
ing the isolation of cell walls (25). Glycine comprises
approximately half the peptide pool in the cell-wall sample
and the increased intensity of the glycine «-carbons at
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42-ppm relative to other a-carbons is evident in the cell-
wall spectrum versus the whole-cell spectrum.

The "N CPMAS spectral differences are dramatic and
also reveal the major compositional differences between
whole cells and cell walls. Whole cells, with their collection
of cytoplasmic and membrane proteins, ribosomal RNA,
lipids, and cell walls, contain amides ascribed to peptide
backbones, Gln and Asn side-chain nitrogens, and other
amide-containing species. They also contain side-chain ni-
trogens associated with histidines, arginines, and lysines
(Fig. 2). The cell walls, in contrast, do not harbor the full
panel of amino acids observed in whole cells. The '°N
cell-wall spectrum contains only amide contributions, indi-
cating the full extent of bridge-linking and cross-linking in
this sample, with minimal open (non-cross-linked) glycine
bridges or lysyl amines present, and, as expected, no histi-
dine or arginine contributions.

Carbon-nitrogen one-bond pairs in whole cells
and cell walls

The general a-carbon and nitrogen amide assignments indi-
cated in Fig. 2 are further supported and characterized
experimentally in Figs. 3 and 4. In Fig. 3, ">*C['>N] REDOR
was employed using a '*N-enriched sample to identify car-
bons in whole cells and cell walls that are directly bonded
to nitrogen (Fig. 3), where REDOR restores the '*C-'°N
dipolar couplings that are removed by magic-angle spin-
ning. REDOR is powerful when applied in this way as a
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FIGURE 2 Comparative CPMAS spectra of whole cells and cell walls. The *C and "N CPMAS spectra of [u-">C, u-'>N]-labeled S. aureus whole cells
(grown to ODggp = 1.0) and cell walls isolated from these cells. Whole-cell spectra contain more types of carbon and nitrogen resonances than cell walls,
including the full panel of amino acids, RNA, and lipids. The high prevalence of glycine in the cell wall is revealed in the a-carbon region of the *C spectrum
as well as in the >N cell-wall spectrum, as annotated. The whole-cell and cell-wall samples were 66 and 60 mg, respectively. In total, 1024 scans were

collected for *C and 12,288 for 5N
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FIGURE 3 '3C{'>N} REDOR of S. aureus whole cells and cell walls. The '*C{'°>N} REDOR NMR performed for 1.68 ms (12 7,) of [u-'°N]-labeled whole
cells and cell walls reveals directly bonded '*C-'>N pairs, primarily due to peptide bonds and a-carbons. Each dephased spectrum (dashed line) is provided as
an overlay with the S, full-echo spectrum (solid line). The difference spectrum (AS) represents the exact difference of the Sy and S spectra and shows just the
carbons that were selected through their one-bond dipolar coupling to nitrogen. The carbonyl spinning sideband is indicated by ssb. A total of 16,384 scans of
So and S were collected for the whole-cell sample (57 mg) and cell-wall samples (35 mg). To see this figure in color, go online.

spectroscopic filter to identify carbons, for example, that are
one-bond or other specified distance away from another nu-
cleus. In whole cells, the carbonyl peak is nearly completely
dephased after 1.68 ms (12 7, with 7143 Hz MAS) of 3¢
{">NJREDOR dephasing (Fig. 3). At this evolution time,
one-bond C-N couplings would exhibit complete dephas-
ing. This result is consistent with most of the carbonyl
contributions in whole cells arising from proteins, where
peptide carbonyls completely dephase. Nucleic acid car-

bons are also dephased in the 140-160 ppm region and
the protein a-carbons ranging from 40 to 70 ppm are de-
phased by nitrogen. Cell walls lack nucleic acids, but are
rich in the peptidoglycan peptides described above. The
42-ppm peak in the cell-wall spectrum is uniquely attrib-
uted to glycyl a-carbons and is completely dephased, but
exhibits only 70% dephasing in whole cells, indicating
that other whole-cell carbons not bonded to a nitrogen
also contribute to the 42-ppm carbon shift in a whole-cell

A Cell-wall B
15N spectra

13C{15N} frequency selective REDOR

REDOR
difference
(AS)

full echo
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dephased

echo
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LR IR PN I T T T T T T T T T L L I T L LR L *
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FIGURE 4 Frequency-selective REDOR for spectral correlations in cell walls. (A) Frequency-selective '°N pulses select each of two amide peaks in the
SN CPMAS spectrum. (B) Frequency-selective '°N dephasing pulses were used in 16-T, (2.24 ms)'*C{'°N} REDOR measurements to experimentally
confirm the spectral assignments made in Fig. 2. Recoupling with the up-field >N peak at 120 ppm results in dephasing of carbonyls and preferential de-
phasing of the a-carbons centered at 55 ppm, attributed to a-carbons other than glycine (left, blue REDOR spectra). Recoupling with the down-field '>N peak
centered at 107-ppm results in preferential dephasing of the 42-ppm glycine a-carbons (right, red REDOR spectra). A total of 8192 scans of Sy and S were
collected for each set of spectra of cell walls (35 mg). To see this figure in color, go online.
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spectrum. Thus, the cell-wall REDOR spectra identify the
one-bond C-N pairs as arising from carbonyls (correspond-
ing to peptide bonds and n-acetylated glycosyl moieties)
and peptide «-carbons.

Frequency-selective NMR experiments were performed
to experimentally demonstrate and emphasize the glycine-
specific contributions to the cell-wall '*C and '°N spectra.
The glycine a-carbon has a unique chemical shift that can
be utilized for spectroscopic selection strategies in complex
whole-cell systems (15,32). When involved in a peptide
bond, the glycine nitrogen chemical shift is also distinct
from other amides and we demonstrated using frequency-se-
lective REDOR that the up-field '°N shift at 107 ppm arises
primarily from glycyl nitrogens, whereas the lower field '°N
peak near 120 ppm is associated with nonglycine «-carbons
(Fig. 4 A). In frequency-selective REDOR experiments, car-
bons were observed at natural abundance and nitrogens that
were uniformly labeled were selectively dephased to recou-
ple only the nitrogens near 107 or 120 ppm, as indicated
in Fig. 4. The nonglycine a-carbons were preferentially
dephased when recoupling was performed by selectively
dephasing the 120-ppm '°N resonance associated with the
general amide pool (Fig. 4 B, fop, blue), whereas the glycine
a-carbon peak was selectively dephased by nitrogens at 107
ppm (Fig. 4 B, bottom, red). Polysaccharide signatures iden-
tify cell-wall content in whole cells

‘We hypothesized that the anomeric and sugar carbons in
whole-cell spectra largely arise from cell-wall sugars in the
peptidoglycan and teichoic acids. In addition to these contri-
butions, the whole cells would contain lipoteichoic acid and
some metabolic sugar pools destined for the cell-wall and
modified lipid biosynthetic pathways. We used '*C-'>C
DARR to identify carbons that are near to one another in
cell walls and whole cells. Assignments of cell-wall carbons
(red) are provided in Fig. 5. The distinct amino acids that
comprise the peptidoglycan can be assigned, including their
carbonyl and a-carbons in addition to some side-chain car-
bons, and the sugar system can be identified in the 55-105
ppm region. The assigned two-dimensional cell-wall spec-
trum is provided as an overlay atop the whole-cell spectrum,
for which there are numerous cellular contributions that
cannot be uniquely assigned. To assess the similarity of
the sugar spin systems in the two samples, a spectral slice
of each two-dimensional plot corresponding to carbons
that arise from proximity to the 100-ppm anomeric carbons
is provided at the top of the figure. We found that DARR can
be employed in this way to detect the polysaccharide spin
system in whole cells and reveals similar sugar peaks as
in an isolated cell-wall sample.

Detection of reduced cell-wall content in
protoplasts

To manipulate and further examine the sugar-carbon spec-
tral pools, we prepared a protoplast sample that consists of
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intact cells with only a thin layer of cell wall surrounding
the cell after the majority of the peptidoglycan is digested
with lysostaphin. Protoplasts were stabilized by trehalose
to prevent cell lysis. Sucrose is often used as an osmotic
stabilizer in protoplast preparations, but trehalose is a suit-
able substitute and avoids unwanted spectral overlap in the
100-ppm region where sucrose carbons would appear.
Instead, trehalose carbons contribute to peak intensity pri-
marily at 92 and 73 ppm with smaller contributions at 68,
62, and 61 ppm (Fig. 6). Digestion of peptidoglycan with
lysostaphin results in protoplasts that have a '*C spectrum
with an obvious reduction in anomeric carbons, where the
whole-cell and protoplast spectra have been normalized by
overall integrated area (Fig. 6). A concomitant decrease in
sugar carbons is observed between 60 and 85 ppm and a
decrease in carbons at 42 ppm is consistent with the loss
of glycine, which is prevalent in the cell wall. As revealed
in the comparative '*C{'>’N}REDOR spectra of whole
cells and cell walls in Fig. 3, whole cells contain additional
non-Gly contributions between 40 and 45 ppm and these
are not altered. In addition, the trehalose used to protect
the protoplasts contributes to the spectrum at 90 ppm
and precludes this region from being used for comparison.
The spectra are normalized by total integrated area and
give the same result when normalized by sample mass
and number of scans. The carbonyl peak intensity contrib-
utes similarly to whole cells and to cell walls by mass,
and thus no difference is observed in protoplasts with
reduced cell-wall content. This comparison is sensitive
to compositional parameters that differ between two
samples. Overall, the loss of cell wall that results during
a protoplast preparation can be observed in the compara-
tive '3C CPMAS spectra of whole cells and protoplast
preparations.

Antibiotic-induced alterations in cell-wall
composition by whole-cell NMR

We tested the sensitivity of the approach described above to
detect cell-wall alterations in whole cells due to antibiotic
treatment. Untreated cells were compared to cells treated
with fosfomycin and chloramphenicol. Fosfomycin is a
cell-wall biosynthesis inhibitor that inactivates the enzyme
MurA, responsible for the ultimate ability to link soluble
peptide and glycan components inside the cell to generate
cell-wall precursors (10,34,35). Chloramphenicol has an
entirely different mode of action and targets the bacterial
ribosome to generally inhibit cellular protein synthesis by
interfering with peptidyl transferase activity (36-38).
Compared to untreated cells, fosfomycin treatment resulted
in notable carbon pool decreases among all polysaccharide
carbons in the 55-100-ppm range. A reduction in the
38-ppm shoulder of the broader peak centered at ~42 ppm
is consistent with decreased glycine content (Fig. 7). Chlor-
amphenicol treatment, in contrast, does not inhibit cell-wall
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FIGURE 5 Comparative polysaccharide correla-
tions in whole cells and cell walls. A two-dimen-
sional '*C-'*C DARR spectrum was obtained for
[u-"3C, u-""N]-labeled whole cells and cell walls

dc [ppm]

using a spin-diffusion mixing time of 2 s. Assign-
ments are based on the chemical shifts reported by
Kern et al. (45) and in the Biological Magnetic
Resonance Bank. The '>C-'>C DARR measure-
ment was also performed on whole cells (black)
and is compared to the cell-wall spectrum (red)
with the same mixing time of 2 s. The whole-
cell two-dimensional spectrum contains more con-
tributions from all the carbon types in proteins and
other molecules, observed as additional peaks and
broader peaks than in the cell-wall spectrum, in
addition to the cell-wall contributions. Comparison
of the whole-cell (black) and cell-wall (red) one-
dimensional traces identifies the detected carbons
that arise from spin-diffusion starting at the
anomeric carbon at 100 ppm, and demonstrates
the similar environment of the anomeric carbons,
arising from the cell wall whether detected in iso-
lated cell walls or intact cells. These data were ac-
quired using the same samples as in Fig. 2, with 84
scans for the cell walls (60 mg) and 192 scans for
whole cells (66 mg), each with 128 increments in

d¢ [ppm]

synthesis, but instead prevents protein synthesis at the ribo-
some (36). The chloramphenicol-treated NMR spectrum
reveals the relative increase in cell-wall content in this
whole-cell sample, as protein synthesis is not maintained
to keep up with the demands of the cell during chloram-
phenicol treatment. Thus, the cell-wall carbons represent a

——Whole cells
—— Protoplast

sugars

trehalose
anomerics \

200 150 100

50 0
d¢ [Ppm]
FIGURE 6 '*C CPMAS spectrum of intact protoplasts reveals decreased

cell-wall content. The '*C spectra of protoplasts reveal a major decrease in
the anomeric carbons in the protoplast sample at 100 ppm relative to the
parent whole-cell spectrum. A decrease in the cell-wall sugar region from
60 to 85 ppm is also observed and the decrease in intensity at 38 ppm is
consistent with the loss of glycyl a-carbons, where glycyl residues
comprise ~50% of the amino acids in the peptidoglycan. Trehalose, used
as an osmotic stabilizer of protoplasts, contributes significantly to peak in-
tensity at 92 and 73 ppm with smaller contributions at 68, 62, and 61 ppm.
In total, 1024 scans were collected for the whole-cell (66 mg) and protoplast
(71 mg) samples. To see this figure in color, go online.
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the second dimension. To see this figure in color,
go online.

higher percentage of the whole-cell carbon pools after treat-
ment with chloramphenicol.

DISCUSSION

The ability to obtain quantitative comparisons of chemical
and molecular composition is crucial for problem-solving
efforts in biology and biochemistry. Quantitative compari-
sons of specific proteins can be profiled among intact
cellular preparations as well as processed extracts by
immunoblotting and ELISA assays. RNA transcripts can
be enumerated after RNA isolation. Quantitative profiling
of peptidoglycan and other macromolecular and polymeric
species, e.g., lipids and polysaccharides, however, pose
more of a challenge to analysis by conventional methods.
In particular, characterizing the peptidoglycan composition
in Gram-positive bacteria such as S. aureus is more
challenging than in E. coli due to the presence of a more
highly cross-linked network (39). Enzymatic digestions
followed by HPLC-MS analyses (17,40-42) can provide
some valuable information about the qualitative com-
position of the peptidoglycan, but does not provide a com-
plete accounting of peptidoglycan components. The highly
cross-linked muropeptide species that cannot be fully di-
gested and resolved often appear as a hump in HPLC chro-
matograms (40). We sought to develop a new approach to
examine intact cell walls and whole cells by NMR that
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200

FIGURE 7 Whole-cell NMR spectra reveal antibiotic-induced alterations
in cell-wall content. Fosfomycin targets cell-wall biosynthesis in S. aureus,
whereas chloramphenicol is a protein synthesis inhibitor. '>*C CPMAS
spectra of whole cells harvested after fosfomycin treatment (40 ug/mL) re-
vealed decreased cell-wall content as assessed by the diminution of the
anomeric and polysaccharide carbon peaks with respect to other carbons
in the spectrum. In contrast, chloramphenicol treatment (20 pg/mL) results
in enhanced cell-wall content relative to the overall whole-cell carbon pools
with reduced cytoplasmic protein contributions. Spectra were normalized by
integrated intensity to emphasize the relative increases and decreases among
all types of carbons in the three samples. Although this normalization is the
most intuitive, the conclusions do not change if the spectra are normalized by
carbonyl or aromatic or aliphatic carbon intensity. A total of 1024 scans were
acquired for the control (51 mg), fosfomycin (59 mg), and chloramphenicol-
treated (56 mg) samples. Antibiotics were added at ODggo = 0.5 and cells
were harvested 4.5 h after antibiotic addition. Final ODge( values were 2.8
(control), 1.4 (fosfomycin), and 1.6 (chloramphenicol). To see this figure
in color, go online.

could provide spectral snapshots of cell-wall composition
and content in the spirit of how whole-cell biochemical as-
says such as Western blots can reveal the comparative
levels of specific proteins of interest. We avoided selective
amino-acid labeling strategies that require determinations
of enrichment, and label scrambling, in order to make
quantification straightforward and to introduce a method
that could be readily extended to other organisms. Thus,
13C spectra were obtained from S. aureus cells with '°>C
enrichments levels either at natural abundance or fully
labeled at 99%. When performing '’N NMR measure-
ments, samples were uniformly '°N labeled.

We discovered that simple one-dimensional '*C and '*N
spectra of whole cells and cell walls reveal the unique
compositional signatures that distinguish cell-wall material
from other whole-cell components (Fig. 2). Cell-wall '*C
and "°N spectra provide the total compositional pools of
peptidoglycan, with its five amino acids and disaccharide
building blocks, and teichoic acid. The carbon spectrum ac-
counted for the corresponding set of anticipated chemical
shifts and the nitrogen spectrum immediately revealed the
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highly cross-linked nature of the material (as amides) with
little detectable amine intensity. Selective NMR experi-
ments aided accurate spectral assignments and one-bond
REDOR experiments confirmed that all a-carbons assigned
in the spectrum exhibited complete dephasing by '°N result-
ing from peptide bond C-N pairs (Figs. 3 and 4). Although
REDOR is often used and appreciated for its robustness and
ability to measure accurate long-range distances in selec-
tively labeled systems with isolated spin pairs such as
in protein complexes and drug-cell-wall complexes, the
REDOR approach is powerful in its ability to serve as a
spectroscopic filter. This is shown in Figs. 3 and 4 to
quantify the extent of one-bond C-N pairs, for example.
Whole-cell '*C and N spectra are more complex including
contributions from all proteins, nucleic acids, and bio-
molecules in the cell, including the cell wall. Yet, we hy-
pothesized that we could detect changes in cell-wall
composition by whole-cell NMR through the cell-wall poly-
saccharide spectral signatures. The most straightforward
test of this hypothesis is illustrated by the comparative *C
CPMAS spectra of whole cells and protoplasts in which
the majority of the cell wall is stripped away from the cells
after lysostaphin treatment (Fig. 6). This revealed the major
contribution of polysaccharides to cell walls that are not
representative of other cellular pools and the ability to
monitor the relative amount of cell wall among whole-cell
samples through a '*C CPMAS spectrum.

A major motivation for our work is to ultimately examine
emerging antibiotic candidates and evaluate their modes of
action in whole cells using the most informative panel of
whole-cell and cell-wall NMR approaches, particularly for
S. aureus and other Gram-positive pathogens. In this contri-
bution, we discovered that a whole-cell NMR spectrum of
fosfomycin-treated cells could reveal a decrease in cell-
wall content. In comparison, treatment with the protein syn-
thesis inhibitor chloramphenicol resulted in an altered
compositional balance where the cell-wall spectral contribu-
tions were increased relative to untreated cells, while
cellular pools associated with proteins were decreased
because cytoplasmic protein pools were not replenished dur-
ing antibiotic treatment. Thus, in addition to providing a
spectral snapshot of cell-wall content, we are also able to
capture global changes in carbon and nitrogen cellular meta-
bolism through the whole-cell NMR spectra. This latter
example, in particular, emphasizes the applicability of
solid-state NMR to examine the influence of other perturba-
tions on overall carbon pools within intact cellular assem-
blies. This approach is general, does not require selective
labeling strategies, and can be implemented to examine
cell-wall alterations, such as those due to antibiotics, genetic
mutations, or other environmental conditions. In addition,
future work with >'P NMR can be used to further dissect
cell-wall spectra and to distinguish the peptidoglycan sugars
as arising from either peptidoglycan or teichoic acid compo-
nents of the cell wall.
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