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Abstract

The general ability and tendency of bacteria and fungi to assemble into bacterial communities, termed
biofilms, poses unique challenges to the treatment of human infections. Fungal biofilms, in particular, are
associated with enhanced virulence in vivo and decreased sensitivity to antifungals. Much attention has
been given to the complex cell wall structures in fungal organisms, yet beyond the cell surface, Aspergillus
fumigatus and other fungi assemble a self-secreted extracellular matrix that is the hallmark of the biofilm
lifestyle, protecting and changing the environment of resident members. Elucidation of the chemical and
molecular detail of the extracellular matrix is crucial to understanding how its structure contributes to per-
sistence and antifungal resistance in the host. We present a summary of integrated analyses of A. fumigatus
biofilm architecture, including hyphae and the extracellular matrix, by scanning electron microscopy and A.
fumigatus matrix composition by new top-down solid-state NMR approaches coupled with biochemical anal-
ysis. This combined methodology will be invaluable in formulating quantitative and chemical comparisons
of A. fumigatus isolates that differ in virulence and are more or less resistant to antifungals. Ultimately,
knowledge of the chemical and molecular requirements for matrix formation and function will drive the
identification and development of new strategies to interfere with biofilm formation and virulence.
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Introduction

Aspergillus fumigatus is an opportunistic fungus that is the cause
of serious human infections including lethal fungal infections
among immunosuppressed individuals,'=® aspergilloma, and
invasive pulmonary aspergillosis.*>> A. fumigatus is often found
together with Pseudomonas aeruginosa in lung infections of
patients with cystic fibrosis.®” The participation of A. fumigatus
in biofilm communities specifically contributes to its virulence in
invasive pulmonary aspergillosis and aspergilloma.® A. fumiga-
tus biofilm communities and biofilms in general are assembled
from many cells that surround themselves with a self-secreted

extracellular matrix of various molecular components, often
involving different proteins and polysaccharides as well as some-
times including lipids, nucleic acids and other molecules.’~°
A. fumigatus within biofilm communities exhibits enhanced
recalcitrance to antifungal treatment and are implicated in
persistent and chronic infections. Thus, interfering with biofilm
formation has emerged as an attractive and needed avenue to
develop new therapeutics.

Mechanistically, biofilms can be envisioned to protect
resident cells from antibiotics through several mechanisms.
Physically, the matrix components could prevent antibiotic
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penetration to resident cells.®~!! This could involve chemical
sequestering or binding of antifungals by matrix components or
repulsion of antifungals due to electrostatic or hydrophobicity
considerations.'? 13718 Biofilm formation also promotes the
development of slow-growing persister cells that are not affected
by antimicrobials.!” Efforts to inhibit production of matrix
components or to inhibit the physical interactions between
secreted components has emerged as an attractive antivirulence
approach toward inhibiting biofilm formation and maintaining
or enhancing A. fumigatus sensitivity to antifungals.’’ Such
approaches require knowledge of matrix composition as well
as the genetics and molecular mechanisms underlying the regu-
lation and production of the matrix components. These biofilm
parameters are not typically available from traditional studies of
organisms grown in standard cell culture, in nonbiofilm states.
We have worked to introduce complementary analyses of A.
fumigatus biofilms to provide holistic views of biofilm archi-
tecture and chemical composition.?!*?? For biofilm architecture,
we have optimized sample preparation, processing protocols,
and visualization using scanning electron microscopy (SEM).2!
Toward obtaining holistic and also chemically specific compo-
sitional parameters of intact isolated matrix material, we intro-
duced approaches using solid-state NMR spectroscopy.?? Solid-
state NMR has been employed to obtain compositional and
structural detail in complex assemblies including whole bacterial

cells and even in intact plant leaves.?3-%’

It serves as a power-
ful complement to traditional biochemical analyses as most bio-
chemical analyses require that the complex and insoluble biofilm
matrix be broken down through enzymatic digestion or chemi-
cal hydrolysis to generate soluble samples for chromatography,
for example, HPLC, and techniques including mass spectrome-
try and protein gel analysis. Such characterization is crucial for
identifying the very specific lists of parts in a complex material.
However, matrix materials cannot always be completely solubi-
lized, leaving some material uncharacterized. Also, isolation of
specific parts can be accompanied by losses in yield and thus
pose a challenge to quantitative analysis of such complex mate-
rials. Solid-state NMR analysis of the complex matrix material,
on the other hand, can provide a complete accounting of all the
types of carbons in a sample and can be applied to nitrogen
and phosphorous as well.26>2” The solid-state NMR spectrum
of a matrix sample will not necessarily unambiguously identify
the specific proteins or polysaccharides in the sample but will
provide quantitative determination of the exact carbon types in
a sample, that is, the percent of carbonyls and polysaccharide
anomeric carbons and one-bond carbon-nitrogen pairs in a sam-
ple. It affords an unambiguous atomic-level chemical accounting
that can be used in powerful comparisons across samples.

In exciting examples, we have found this approach of us-
ing solid-state NMR on intact matrix samples to also serve as
an unanticipated discovery tool. A notable example is our re-
cent discovery that E. coli biofilms produce a naturally chemi-

cally modified form of cellulose in their biofilm matrix — phos-
phoethanolamine cellulose.?®?? Cellulose is the most abundant
biomolecule on Earth, and this represents the first discovery of a
chemically modified cellulose produced in nature. Standard pro-
tocols used to isolate cellulosic materials from biofilms employ
harsh acid hydrolysis which we discovered removes the modifica-
tion.?’ Solid-state NMR spectroscopy can be performed directly
on intact biofilms and on the isolated but still insoluble matrix
material iz situ. This work complements proteomics and other
biochemical analysis of matrix parts solubilized for standard
analytical methods and provides a complete accounting of the
various types of molecules to the intact matrix,>1-26-28,30

We recently reviewed how complementary biochemical
and biophysical approaches, including solid-state NMR spec-
troscopy, generate descriptions of fungal biofilm composition
that contribute to drug discovery and development opportu-
nities.?? Here we focus and provide a summary of the salient
features of our analysis of A. fumigatus biofilms cultivated in
Roswell Park Memorial Institute (RPMI) 1640 medium primar-
ily using scanning electron microscopy and solid-state NMR
spectroscopy. Microscopy most obviously provides unique vi-
sualization of biofilm architecture. Solid-state NMR param-
eters, on the other hand, provide compositional boundary
conditions—providing a full accounting of all the types of car-
bons, for example, in a biofilm matrix that can be translated
into overall pools of biomolecules such as proteins, lipids and
polysaccharides.

A. fumigatus biofilm architecture by SEM

Fungal biofilms consist of a three-dimensional network of cellu-
lar hyphae and extracellular matrix. Early electron microscopy
work by Beauvais and coworkers, first employing biofilms grown
in aerial static cultures, revealed the remarkable global biofilm
architecture with ECM covering individual hyphae and serv-
ing to glue hyphae together into a contiguous network.3! Early
descriptors even referred to the communities observed in vivo

]

and these resembled the biofilms assembled
31

as “fungal balls,’
in laboratory culture.”! In addition, this foundational work
characterized the matrix composition as containing galactoman-
nan, «1,3 glucans, monosaccharides, polyols, melanin, and pro-
teins.>! During our own recent work investigating A. fumigatus
biofilms, we took the opportunity to fully optimize and further
explore A. fumigatus biofilms and also multispecies interactions
through scanning electron microscopy.?!:2

Visualization of biofilm communities is crucial to understand-
ing biofilm function and, ultimately, to elucidating the mecha-
nisms of inhibitors and the influence of environmental conditions
that impact community behavior and, potentially, pathogenesis.
We discovered that differences in sample processing and image
acquisition parameters differentially emphasize details of differ-

ent parts of a biofilm.?? Specifically, some parameters available
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Figure 1. High-resolution ultrastructural SEM analysis of A. fumigatus biofilms grown in RPMI 1640 nutrient broth. Micrographs resulted from optimized sample
preparation and processing parameters as well as SEM detection methods to enable high-resolution visualization of the fibrous ultrastructure of ECM on
and between hyphae. As described previously,??> samples were harvested from flasks and fixed for limited time periods in 4% paraformaldehyde with 2%
glutaraldehyde in 0.1 M sodium cacodylate buffer, rinsed in the same buffer, and post-fixed with 1% OsO4. Samples were then rinsed in water and gradually
dehydrated in increasing concentrations of ethanol (50, 70, 90, 100%, 5 min each) and critically point dried with liquid CO,. Dried samples were sputter-coated
(50 A, Au/Pd) and imaged with a Hitachi S-3400 N SEM operated at 10 kV under high vacuum, using an Everhart-Thornley (ET) SE detector. Top left micrograph
reproduced from Joubert et al. 2017.22 Bottom right micrograph reproduced from Reichhardt et al. 2015.2'

to an experimenter include aldehyde fixation of samples, heavy
metal contrasting, drying techniques, and ionic liquid treatment.
Here we present a set of four images obtained with parame-
ters optimized to best capture the ultrastructure of the extra-
cellular matrix material surrounding hyphae (Fig. 1). We note
that the ability to resolve the ultrastructural features of cellu-
lar and ECM components depended strongly on the fixation
and drying techniques and we determined that visualization by
high-resolution SEM and field emission SEM techniques using a
secondary electron (SE) detector as optimal. Indeed, through our
thorough analysis and comparison of many imaging parameters
for A. fumigatus biofilm, some samples appeared to lack ECM
under certain processing and imaging conditions but exhibited
surprising quantities of ECM with so-called high-efficiency In-
Lens SE detection, which obtains high lateral resolution and
edge contrast.”? The combined results presented a recommenda-
tion for achieving consistent high-resolution ultrastructural SEM
analysis of cellular features and ECM of A. fumigatus biofilms
- primarily relying on quite short fixation times and includ-
ing osmium tetroxide post-fixation, followed by critical point
drying.??

A. fumigatus biofilm compositional framework from
solid-state NMR

We utilized a top-down NMR approach to quantitatively char-
acterize the ECM composition of A. fumigatus.*' This approach
uses two types of one-dimensional solid-state NMR experi-
ments: cross-polarization magic-angle spinning (CPMAS) and
rotational-echo double-resonance (REDOR) NMR. CPMAS,
REDOR, and other solid-state NMR methods have been power-
ful tools, dating back to 1981, to study chitin-rich materials and
fungal cell walls including melanin components.32=3% The 13C
CPMAS spectrum contains information about the quantities
of carbon types, including carbonyls, aromatic carbons, and
polysaccharide carbons present in the ECM. No 3C labeling
was used or needed, and '>C NMR analysis was performed by
detecting '3C at natural abundance levels (approximately 1% of
all carbons are '3C isotopes). On the other hand, biosynthetic
incorporation of N labels is required for routine >N analysis,
and PN was incorporated into cells and the biofilm matrix
through use of a fully '"N-labeled version of RPMI 1640
medium. Mature A. fumigatus biofilms grown statically in
this medium were then subjected to a non-degradative ECM
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Figure 2. Solid-state NMR measurements provide a quantitative accounting of the chemical composition of the matrix coupled with additional molecular detail
from biochemical analysis. (A) Solid-state NMR '3C CPMAS and "*C{'*N}REDOR measurements quantify distinguishing carbon pools within the intact extracted
A. fumigatus ECM. (B) An annotated '*C CPMAS NMR spectrum of the ECM displays the basic spectrum obtained in one CPMAS NMR experiment, wherein the
asterisk represents a spinning sideband (reproduced with permission from Reichhardt et al. 2015).2' Additional experiments were performed to enable integration
of carbon contributions and to further quantify carbon types, i.e., specific carbons bonded to nitrogen. (B) Protein gel analysis and protein identification revealed
catalase B and Asp f2 as major protein components in the ECM (reproduced from Reichhardt et al. 2015).2" (C) A Venn diagram summarizes the quantified carbon
contributions (percent carbon by mass) in the A. fumigatus ECM. This Figure is reproduced in color in the online version of Medical Mycology.

extraction protocol.?! The N labeling additionally made
it possible to further annotate the carbon pools according
to carbon-nitrogen couplings using '*C{""N}REDOR NMR
experiments. The 3C CPMAS spectrum of the extracted ECM
revealed that the A. fumigatus ECM is rich in polysaccharides
(Fig. 2A). This was evident as the polysaccharide anomeric
carbons (94 to 100 ppm) and associated ring sugar carbons
(60 to 80 ppm) accounted for approximately 43% of the total
carbon mass. Quantification of contributions to the CPMAS
spectrum was enabled with quantitative CP array experiments.
A minimum of approximately 5 mg of sample in a 5 mm NMR
rotor would be required for this type of NMR analysis with 13C
at natural abundance (unlabeled sample). Even smaller samples
would be possible in an NMR probe with a smaller diameter
coil, for example, 3.2 mm; however, matrix sample amount
was not limiting in our application, so rotors of 5 mm or larger
are well suited to the measurements. To further annotate the
relative contributions of other spectral regions within the '3C
spectrum, we used '3C{"*N}REDOR as a spectroscopic filter
to identify and quantify carbons that are directly bonded to
nitrogen. This experiment enabled us to characterize the relative
contributions of proteins to the ECM because proteins contain
amino acids, each of which has an «-carbon and a carbonyl
directly bonded to nitrogen. Through this experiment, we
determined that carbonyls (173 ppm) account for 12% of the
total carbon mass. Similarly, we determined that a-carbons (50

to 60 ppm) are 7% of the total carbon mass. The stoichiometric
excess of carbonyls relative to a-carbons can be attributed to
lipids and modifications on sugars, for example, acetyl groups.
Interestingly, from the ratio of polysaccharide anomeric carbons
(8%) to a-carbons (7%), even in the absence of other informa-
tion and "N NMR experiments, one can quickly estimate that
the percentages of polysaccharides and protein in the ECM are
approximately equal as stoichiometrically there is one anomeric
carbon per sugar unit and one a-carbon per amino acid. The
results of the full analysis are displayed in Figure 2A.

To identify the specific protein components within the A. fu-
migatus ECM, we applied more traditional biochemistry meth-
ods. Specifically, we analyzed the ECM using SDS-PAGE paired
with mass spectrometry and Edman sequencing for protein iden-
tification (Fig. 2B). Although this method only detects SDS sol-
uble proteins, it is still useful to help characterize the ECM.
By SDS-PAGE analysis, the ECM contained several SDS-soluble
proteins. Five bands corresponding to high abundance ECM pro-
teins (labeled 1-5) were examined by mass spectrometry and
Edman degradation. Two unique proteins, catalase B (band 1;
M.W. 79,910 Da) and Asp f2 (band 2; M.W. 32,838 Da), were
identified. Both catalase B and Asp 2 are known to be secreted
from the cells, and are N-linked glycosylated.?*~*! Through fur-
ther analysis that included treatment of the ECM with peptide-
N-glycosidase F (PNGase), we determined that bands 3, 4, and
5 correspond to deglycosylated and truncated forms of catalase
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B and Asp 2. Thus, the major protein components of the ECM
were attributed to catalase B and Asp £2.2!

In summary, using the combination of CPMAS and the selec-
tive recoupling experiment, 3C{""N}REDOR, we provided a
quantitative categorization of all carbons in the ECM (Fig. 2C).
We further identified ECM proteins using more traditional
biochemistry methods. The future benefit of elucidating the
ECM composition in this way is two-fold. First, we now have a
means of tracking changes in composition due to drug treatment
or changes in environment, and in a way that does not rely on
solubilizing ECM with caveats regarding incomplete sample
dissolution and ambiguities on quantitative contributions based
on what can be solubilized and analyzed. Second, we can apply
this integrated methodology to determine the composition of
other types of biofilm. Together with the invaluable visual-
ization of Aspergillus biofilms by electron microscopy, we are
excited by the possibilities of connecting specific parameters
of biofilm matrix composition with function and guiding the
understanding and development of antifungals and biofilm
inhibitors with new modes of action.
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